Surface Soil Water Content Estimation from Thermal Remote Sensing based on the Temporal Variation of Land Surface Temperature
نویسندگان
چکیده
Soil water content (SWC) is a crucial variable in the thermal infrared research and is the major control for land surface hydrological processes at the watershed scale. Estimating the surface SWC from remotely sensed data using the triangle method proposed by Price has been demonstrated in previous studies. In this study, a new soil moisture index (Temperature Rising Rate Vegetation Dryness Index—TRRVDI) is proposed based on a triangle constructed using the mid-morning land surface temperature (LST) rising rate and the vegetation index to estimate the regional SWC. The temperature at the dry edge of the triangle is determined by the surface energy balance principle. The temperature at the wet edge is assumed to be equal to the air temperature. The mid-morning land surface temperature rising rate is calculated using Meteosat Second Generation—Spinning OPEN ACCESS Remote Sens. 2014, 6 3171 Enhanced Visible and Infrared Imager (MSG-SEVIRI) LST products over 4 cloud-free days (day of year: 206, 211, 212, 242) in 2007. The developed TRRVDI is validated by in situ measurements from 19 meteorological stations in Spain. The results indicate that the coefficient of determination (R 2 ) between the TRRVDI derived using the theoretical limiting edges and the in situ SWC measurements is greater than that derived using the observed limiting edges. The R 2 values are 0.46 and 0.32; respectively (p < 0.05). Additionally, the TRRVDI is much better than the soil moisture index that was developed using one-time LST and fractional vegetation cover (FVC) with the theoretically determined limiting edges.
منابع مشابه
An Improvement on Land Surface Temperature Determination by Producing Surface Emissivity Maps
Emissivity mapping of the Earth’s surface is the prerequisite to thermal remote sensing. A precise determinationof a surface's temperature is dependent upon the availability of precise emissivity data for that surface. The presentstudy area is a part of sugarcane plantation fields in the west part of Khuzestan province. In this work, TemperatureEmissivity Separation algorithm (TES) was applied ...
متن کاملAir temperature estimation based on environmental parameters using remote sensing data
This study is aimed at estimating monthly mean air temperature (Ta) using the MODIS Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), latitude, altitude, slope gradient and land use data during 2001-2015. The results showed that despite some spatial similarities between annual spatial patterns of Ta and LST, their variations are significantly different, so that the...
متن کاملRemote sensing for urban heat and cool islands evaluation in semi-arid areas
Cities are experiencing rapid population growth and consequently extensive urbanization. Land-use/land-cover change is one of the important elements worldwide, which significantly affect the environment. This study aims to describe the emergence of urban heat and cool islands as a result of changes in land-use/land-cover. Land surface temperature over a 32-year period in Isfahan city, Iran was ...
متن کاملEstimating Land Surface Temperature in the Central Part of Isfahan Province Based on Landsat-8 Data Using Split- Window Algorithm
Land surface temperature (LST) is used as one of the key sources to study land surface processes such as evapotranspiration, development of indexes, air temperature modeling and climate change. Remote sensing data offer the possibility of estimating LST all over the world with high temporal and spatial resolution. Landsat-8, which has two thermal infrared channels, provides an opportunity for t...
متن کاملEstimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014